Computer graphics III Monte Carlo integration II

Jaroslav Křivánek, MFF UK
Jaroslav.Krivanek@mff.cuni.cz

Monte Carlo integration

- General tool for estimating definite integrals

Integral:

$$
I=\int f(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

Monte Carlo estimate I :
$\langle I\rangle=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(\xi_{i}\right)}{p\left(\xi_{i}\right)} ; \quad \xi_{i} \propto p(\mathbf{x})$
Works "on average":

$$
E[\langle I\rangle]=I
$$

Generating samples from a distribution

Generating samples from a 1D discrete random variable

- Given a probability mass function $p(i)$, and the corresponding cdf $P(i)$
- Procedure

1. Generate u from $\operatorname{Uniform}(0,1)$
2. Choose x_{i} for which

$$
P(i-1)<u \leq P(i)
$$

(we define $P(0)=0$)

- The search is usually implemented by interval bisection

Generating samples from a 2D discrete random variable

- Given a probability mass function $p_{I, J}(i, j)$
- Option 1:
- Interpret the 2D PMF as a 1D vector of probabilities
- Generate samples as in the 1D case

Generating samples from a 2D discrete random variable

Generating samples from a 2D discrete random variable

- Option 2 (better)

1. "Column" $i_{\text {sel }}$ is sampled from the marginal distribution, given by a 1 D marginal pmf

$$
p_{I}(i)=\sum_{j=1}^{n_{j}} p_{I, J}(i, j)
$$

2. "Row" $j_{\text {sel }}$ is sampled from the conditional distribution corresponding to the "column" $i_{\text {sel }}$

$$
p_{J \mid I}\left(j \mid I=i_{\mathrm{sel}}\right)=\frac{p_{I, J}\left(i_{\mathrm{sel}}, j\right)}{p_{I}\left(i_{\mathrm{sel}}\right)}
$$

Generating samples from a 1D continuous random variable

- Option 1: Transformation method
- Option 2: Rejection sampling

Transformation method

- Consider the random variable U from the uniform distribution Uniform $(0,1)$. Then the random variable X

$$
X=P^{-1}(U)
$$

has the distribution given by the $\mathbf{c d f} P$.

- To generate samples according to a given $\operatorname{pdf} p$, we need to:
- calculate the $\operatorname{cdf} P(x)$ from the $\operatorname{pdf} p(x)$
- calculate the inverse $\operatorname{cdf} P^{-1}(u)$

Rejection sampling in 1D

- Algorithm
- Choose random u_{1} from Uniform $R(a, b)$
- Choose random u_{2} from Uniform $R(0, M A X)$
- Accept the sample only if $p\left(u_{1}\right)>u_{2}$
- Repeat until a sample is accepted
- The accepted samples have the distribution given by the $\operatorname{pdf} p(x)$

- Efficiency = \% of accepted samples
- Area under the pdf graph / area of the bounding rectangle

Transformation method vs. Rejection sampling

- Transformation method Pros
- Almost always more efficient than rejection sampling (unless the transformation formula $x=P^{-1}(u)$ turns our extremely complex)
- Has a constant time complexity and the random number count is known upfront
- Transformation method Cons
- May not be feasible (we may not be able to find the suitable form for $x=P^{-1}(u)$), but rejection sampling is always applicable as long as we can evaluate the pdf (i.e. rejection sampling is more general)
- Smart rejection sampling can be very efficient (e.g. the Ziggurat method, see Wikipedia)

Sampling from a 2D continuous random variable

- Conceptually similar to the 2D discrete case
- Procedure
- Given the joint density $p_{X, Y}(x, y)=p_{X}(\mathrm{x}) \mathrm{p}_{Y \mid X}(\mathrm{y} \mid \mathrm{x})$

1. Choose $x_{\text {sel }}$ from the marginal pdf

$$
p_{X}(x)=\int p_{X, Y}(x, y) \mathrm{d} y
$$

2. Choose $y_{\text {sel }}$ from the conditional pdf

$$
p_{Y \mid X}\left(y \mid X=x_{\mathrm{sel}}\right)=\frac{p_{X, Y}\left(x_{\mathrm{sel}}, y\right)}{p_{X}\left(x_{\mathrm{sel}}\right)}
$$

Transformation formulas for common cases in light transport

- P. Dutré: Global Illumination Compendium, http://people.cs.kuleuven.be/~philip.dutre/GI/

Global Illumination Compendium

 The Concise Guide to Global Illumination Algorithms

Albrecht Duerer, Underweysung der Messung mit dem Zirkel und Richtscheyt (Nurenberg, 1525), Book 3, figure 67.

Importance sampling from the physically-plausible Phong BRDF

- Ray hits a surface with a Phong BRDF. How do we generate the ray for continuing the light path?
- Procedure

1. Choose the BRDF component (diffuse reflection, specular reflection, refraction)
2. Sample the chosen component
3. Evaluate the total PDF and BRDF

Physically-plausible Phong BRDF

$$
f_{r}^{\text {Phong }}\left(\omega_{\mathrm{i}} \rightarrow \omega_{\mathrm{o}}\right)=\frac{\rho_{\mathrm{d}}}{\pi}+\frac{n+2}{2 \pi} \rho_{\mathrm{s}} \max \left\{0, \cos \theta_{\mathrm{r}}\right\}^{n}
$$

Where

$$
\begin{aligned}
& \cos \theta_{\mathrm{r}}=\omega_{\mathrm{o}} \cdot \omega_{\mathrm{r}} \\
& \omega_{\mathrm{r}}=2\left(\omega_{\mathrm{i}} \cdot \mathbf{n}\right) \mathbf{n}-\omega_{\mathrm{i}}
\end{aligned}
$$

Energy conservation:

$$
\rho_{d}+\rho_{s} \leq 1
$$

Selection of the BRDF component

```
pd = max(rhoD.r, rhoD.g, rhoD.b);
ps = max(rhoS.r, rhoS.g, rhoS.b);
pd /= (pd + ps); // prob of choosing the diffuse component
ps /= (pd + ps); // prob of choosing the specular comp.
if (rand(0,1) <= pd)
    genDir = sampleDiffuse();
else
    genDir = sampleSpecular(incDir);
pdf = evalPdf(incDir, genDir, pd, ps);
```


Sampling of the diffuse reflection

- Importance sampling with the density $p(\theta)=\cos (\theta) / \pi$
- $\theta \ldots$ angle between the surface normal and the generated ray
- Generating the direction:

$$
\begin{aligned}
& x=\cos \left(2 \pi r_{1}\right) \sqrt{1-r_{2}} \\
& y=\sin \left(2 \pi r_{1}\right) \sqrt{1-r_{2}} \\
& z=\sqrt{r_{2}}
\end{aligned}
$$

- r1, r2 ... uniform random variates on <0,1)
- Reference: Dutre, Global illumination Compendium (online)
- Derivation: Pharr \& Huphreys, PBRT

sampleDiffuse()

```
// generate spherical coordinates of the direction
float r1 = rand(0,1), r2 = rand(0,1);
float sinTheta = sqrt(1 - r2);
float cosTheta = sqrt(r2);
float phi = 2.0*PI*r1;
float pdf = cosTheta/PI;
// convert [theta, phi] to Cartesian coordinates
Vec3 dir (cos(phi)*sinTheta, sin(phi)*sinTheta, cosTheta);
return dir;
```


Sampling of the glossy (specular) reflection

- Importance sampling with the $\operatorname{pdf} p(\theta)=(\mathrm{n}+1) /(2 \pi)$ $\cos ^{n}(\theta)$
- $\theta \ldots$ angle between the ideal mirror reflection of ω_{0} and the generated ray
- Formulas for generating the direction:

$$
\begin{array}{ll}
\varphi=2 \pi r_{1} & x=\cos \left(2 \pi r_{1}\right) \sqrt{1-r_{2}^{\frac{2}{n+1}}} \\
\theta=\operatorname{acos}\left(\frac{1}{r_{2}^{n+1}}\right) & y=\sin \left(2 \pi r_{1}\right) \sqrt{1-\frac{2}{r_{2}^{n+1}}} \\
& z=\frac{1}{r_{2}^{n+1}}
\end{array}
$$

- r1, r2 ... uniform random variates on $<0,1$)

sampleSpecular()

```
// build a local coordinate frame with R = z-axis
Vec3 R = 2*dot(N,incDir)*N - incDir; // ideal reflected direction
Vec3 U = arbitraryNormal(R); // U is perpendicular to R
Vec3 V = crossProd (R, U); // orthonormal loasis with R and U
// generate direction in local coordinate frame
Vec3 locDir = rndHemiCosN(n); // formulas form prev. slide, n=phong exp.
// transform locDir to global coordinate frame
Vec3 dir = locDir.x * U + locDir.Y * V + locDir.z * R;
return dir;
```


evalPdf(incDir, genDir, pd, ps)

return

```
pd * getDiffusePdf(genDir) +
ps * getSpecularPdf(incdir, genDir);
```


formulas from prev. slides

Variance reduction methods for MC estimators

Variance reduction methods

- Importance sampling
- The most commonly used method in light transport (most often we use BRDF-proportional importance sampling)
- Control variates
- Improved sample distribution
- Stratification
- quasi-Monte Carlo (QMC)

Importance sampling

CG III (NPGR010) - J. Křivánek 2015

Importance sampling

- Parts of the integration domain with high value of the integrand f are more important
- Samples from these areas have higher impact on the result
- Importance sampling places samples preferentially to these areas
- I.e. the $\mathbf{p d f} p$ is "similar" to the integrand f
- Decreases variance while keeping unbiasedness

Control variates

0

Control variates

Consider a function $\mathbf{g}(\mathbf{x})$, that approximates the integrand and we can integrate it analytically:

$$
\begin{aligned}
& I=\int f(\mathbf{x}) \mathrm{d} \mathbf{x}=\underline{\int[f(\mathbf{x})-g(\mathbf{x})] \mathrm{d} \mathbf{x}+\frac{\int g(\mathbf{x}) \mathrm{d} \mathbf{x}}{}} \begin{array}{l}
\text { Numerical integration (MC) } \\
\text { Hopefully with less variance }
\end{array} \text { }
\end{aligned}
$$

than integrating $f(\mathbf{x})$ directly.
We can integrate analytically

Control variates vs. Importance sampling

- Importance sampling
- Advantageous whenever the function, according to which we can generate samples, appears in the integrand as a multiplicative factor (e.g. BRDF in the reflection equation).
- Control variates
- Better if the function that we can integrate analytically appears in the integrand as an additive term.
- This is why in light transport, we almost always use importance sampling and almost never control variates.

Better sample distribution

- Generating independent samples often leads to clustering of samples
- Results in high estimator variance
- Better sample distribution => better coverage of the integration domain by samples => lower variance

- Approaches
- Stratified sampling
- quasi-Monte Carlo (QMC)

Stratified sampling

- Sampling domain subdivided into disjoint areas that are sampled independently

Stratified sampling

Subdivision of the sampling domain Ω into N parts Ω_{i} :

$$
I=\int_{\Omega} f(x) \mathrm{d} x=\sum_{i=1}^{N} \int_{\Omega_{i}} f(x) \mathrm{d} x=\sum_{i=1}^{N} I_{i}
$$

Resulting estimator:

$$
\hat{I}_{\text {strat }}=\frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right), \quad X_{i} \in \Omega_{i}
$$

Stratified sampling

- Suppresses sample clustering
- Reduces estimator variance
- Variance is provably less than or equal to the variance of a regular secondary estimator
- Very effective in low dimension
- Effectiveness deteriorates for high-dimensional integrands

How to subdivide the interval?

- Uniform subdivision of the interval
\square Natural approach for a completely unknown integrand \boldsymbol{f}
■ If we know at least roughly the shape of the integrand \boldsymbol{f}, we aim for a subdivision with the lowest possible variance on the sub-domains

■ Subdivision of a \boldsymbol{d}-dimensional interval leads to $\boldsymbol{N}^{\mathrm{d}}$ samples

- A better approach in high dimension is \boldsymbol{N}-rooks sampling

Combination of stratified sampling and the transformation method

Quasi-Monte Carlo methods (QMC)

- Use of strictly deterministic sequences instead of (pseudo-)random numbers
- Pseudo-random numbers replaced by low-discrepancy sequences
- Everything works as in regular MC, but the underlying math is different (nothing is random so the math cannot be built on probability theory)

Discrepancy

Stratified sampling

Quasi-Monte Carlo

Same random sequence for all pixels

Henrik Wann Jensen

10 paths per pixel

Image-based lighting

Image-based lighting

- Introduced by Paul Debevec (Siggraph 98)
- Routinely used for special effects in films \& games

Image-based lighting

- Illuminating CG objects using measurements of real light (=light probes)

Image-based lighting

Mapping

Debevec's spherical
"Latitude - longitude" (spherical coordinates)

Mapping

Debevec's spherical
"Latitude - longitude" (spherical coordinates)

Mapping

- Mapping from direction in Cartesian coordinates to image UV.

$$
\begin{aligned}
& \text { float } d=\text { sqrt(dir. } x * \text { dir. } x+\text { dir.y*dir.y); } \\
& \text { float } r=d>0 ? 0.159154943 * \text { acos(dir.z)/d : o.o; } \\
& u=0.5+\text { dir. } x_{i} \\
& v=0.5+\text { dir. } y * r_{i}
\end{aligned}
$$

Quote from "http://ict.debevec.org/~debevec/Probes/"

The following light probe images were created by taking two pictures of a mirrored ball at ninety degrees of separation and assembling the two radiance maps into this registered dataset. The coordinate mapping of these images is such that the center of the image is straight forward, the circumference of the image is straight backwards, and the horizontal line through the center linearly maps azimuthal angle to pixel coordinate.
Thus, if we consider the images to be normalized to have coordinates $\mathbf{u}=[-1,1], \boldsymbol{v}=[-1,1]$, we have theta=atan2 (v, u), phi=pi*sqrt($\left.\mathbf{u} * \mathrm{u}+\mathrm{v}^{*} \mathrm{v}\right)$. The unit vector pointing in the corresponding direction is obtained by rotating $(0,0,-1)$ by phi degrees around the \boldsymbol{y} (up) axis and then theta degrees around the $\mathbf{- z}$ (forward) axis. If for a direction vector in the world ($\mathbf{D x}, \mathbf{D y}, \mathbf{D z}$), the corresponding (\mathbf{U}, \mathbf{v}) coordinate in the light probe image is ($D x^{*} r_{1} D y^{*} r$) where $r=(1 / p i) * a c o s(D z) / s q r t\left(D x^{\wedge} \mathbf{2}+D y^{\wedge} \mathbf{n}^{2}\right)$.

Sampling strategies for image based lighting

- Technique (pdf) 1: BRDF importance sampling
- Generate directions with a pdf proportional to the BRDF
- Technique (pdf) 2: Environment map importance sampling
- Generate directions with a pdf proportional to $L(\omega)$ represented by the EM

Sampling strategies

Diffuse only

Ward BRDF, $\alpha=0.2$
Ward BRDF, $\alpha=0.05$

Ward BRDF, $\alpha=0.01$

Sampling according to the environment map luminance

- Luminance of the environment map defines the sampling pdf on the unit sphere
- For details, see PBRT

